算法研究:利用Python解决数学计数原理问题

最近数学修行到“计数原理”部分,前几天做作业时遇到这样一道数学题:

用四种不同颜色给三棱柱六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有多少种?
题目配图

当我看完题目后,顿时不知所措。于是我拿起草稿纸在一旁漫无目的地演算了一下,企图能找到解决方法。结果一无所获。今天终于等到放假了,于是打算通过程序算法解决这个问题。经过2个多小时的研究,终于完成了代码,并求得了答案。

由于Python写起来比较方便而且本人比较喜欢Python的语法,所以研究算法时我通常采用Python,此次也不例外。以下就是整个算法的实现过程。

两种算法

我一共想出了两种用于解决本题的算法:

  • 算法一:将所有的涂色情况通过程序的循环计算出来,然后通过程序的条件判断去除掉不合题意的所有情况,最后得到最终结果。
  • 算法二:从其中任意一个端点(p0)入手,由于其它所有端点都没有涂色,所以它可以涂四种颜色。将这四种颜色通过循环分别涂在这个端点上,每涂上一种颜色后,获取与它相临的一个端点(p1),并获取它可以涂上的颜色,然后通过循环将可用颜色涂上(及不能涂上与p0相同的颜色),每涂上一种颜色,又将p1相邻的未涂色的点涂色(及除p0外其他的相邻端点)。每个点被涂色后都采用同样的方法将相邻的点涂色,以此类推,涂完最后一个点,就记一次情况。所有的递归都完成后,就获得了所有情况。

算法一很直接很粗暴,所以我采用了算法二来解决上述问题。接下来就是具体的代码了。

算法实现

我写了大约90行Python代码来实现这个算法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
colorList = [0, 1, 2, 3]
pointList = []
amount = 0
class Point(object):
def __init__(self):
super(Point, self).__init__()
self.neibors = []
self.color = None
def paint(self, c):
self.color = c
def clean(self):
self.color = None
def getLeftOverColors(self):
copyOfColorList = colorList[0 : 4]
for neibor in self.neibors:
nc = neibor.color
if nc in copyOfColorList:
copyOfColorList.remove(nc)
return copyOfColorList
def main():
global pointList
p0 = Point()
p1 = Point()
p2 = Point()
p3 = Point()
p4 = Point()
p5 = Point()
p0.neibors = [p1, p2, p4]
p1.neibors = [p0, p2, p5]
p2.neibors = [p0, p1, p3]
p3.neibors = [p2, p4, p5]
p4.neibors = [p0, p3, p5]
p5.neibors = [p4, p3, p1]
pointList = [p0, p1, p2, p3, p4, p5]
paintPoint(p0)
print(amount)
def paintPoint(p):
global amount
colors = p.getLeftOverColors()
lastOne = isLastOne()
for c in colors:
p.paint(c)
if lastOne:
amount += 1
else:
for currentNeibor in p.neibors:
if currentNeibor.color == None:
paintPoint(currentNeibor)
break
p.clean()
def isLastOne():
global pointList
paintedNum = 0
for p in pointList:
if p.color != None:
paintedNum += 1
return paintedNum == 5
if __name__ == "__main__":
main()

以下是对各段代码的介绍。

全局变量

  • colorList:颜色列表
  • pointList:存放六个点的列表
  • amount : 涂色方案的种数

Point类

用于储存各个点的信息,如点的颜色(color属性,None代表无颜色)、相邻的点(’neibors’属性)。以及提供paint方法用于将点标记颜色;clean方法用于去除颜色;getLeftOverColors方法用于获取可用颜色,及获取相邻点没有使用的颜色。

main函数

程序开始运行时调用的函数,其中构造了所需的六个点,以及分别为这六个点明确了相邻的三个点。注意,由于这里的点只有相邻和不相邻的位置关系,所以不需要在意这些点到底在三棱柱里对应哪个位置,任意设定这些点的位置对结果来说并没有影响,只需注意它们之间的相邻关系即可。

isLastOne函数

判断是不是最后一个未涂色的点。

paintPoint函数

用于对作为参数传入的点进行着色。其中首先通过调用该点的getLeftOverColors方法获取可用颜色,然后按照上文算法中介绍的,通过遍历可用颜色列表,为该点着色,如果该点不是最后一个点(通过isLastOne函数判断),就递归调用paintPoint函数为相邻的一个未着色的点着色,如果是,则将记下一次涂色方案。

运行代码,得到结果 - 264:

运行结果

Ok,于是这道题就在我们的计算机的帮助下,被成功解决掉了~

如果大家有更好的方案解决这一算法问题,欢迎交流~

版权声明:本文为博主原创文章,转载请注明出处 http://yuehaowang.github.io/2016/07/22/counting-principle-algorithm/
分享到 评论